3<sup>rd</sup> International Symposium on the System of Radiological Protection ICRP2015

# Analysis of individual differences in radiosensitivity using genome editing

Shinya Matsuura

Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan



# Social anxiety about the effects of radiation on the human body has increased

The Fukushima Daiichi nuclear power plant disaster on March 11, 2011

The Great East Japan Earthquake



Current standards for radiological protection of the public have been uniformly established. However, individual differences in radiosensitivity are suggested to exist in human populations, which could be caused by nucleotide variants of DNA repair genes.



Genome editing is a useful tool to investigate individual cellular radiosensitivity

### Individual differences in radiosensitivity are suggested to exist in human populations



### Protocol of CBMN assay for peripheral blood lymphocytes

Peripheral blood was obtained from 6 healthy volunteers.



#### CBMN assay detects individual differences in radiosensitivity among normal individuals

### Two individuals showed difference in radiation sensitivity

| Parameter          | MN/BN |      |      |
|--------------------|-------|------|------|
|                    | 0 Gy  | 1 Gy | 2 Gy |
| Average (Normal 1) | 1.03  | 5.9  | 12.4 |
| Average (Normal 2) | 1.7   | 6.4  | 13.7 |
| S.D. (Normal 1)    | 0.4   | 0.5  | 0.6  |
| S.D. (Normal 2)    | 0.6   | 1.3  | 0.4  |
| p-value            | 0.08  | 0.1  | 0.03 |



Volunteer 1 was a 53-year-old man and volunteer 2 was a 46-year-old woman

### CBMN assay of Ataxia-telangiectasia (A-T) family members

Skin fibroblasts were obtained from A-T family members, and were analyzed by CBMN assay.



#### A-T heterozygous carries showed increased frequency of MN formation as compared to normal individuals



# Nijmegen breakage syndrome (NBS) heterozygous carries showed increased frequency of MN formation



A relationship between heterozygous mutations of familial hyper-radiosensitive diseases and mild radiosensitivity

## Individual radiosensitivity may be attributed to SNPs in DNA repair genes

| Gene       | Amino acid change | Change of base | Phenotype                            |
|------------|-------------------|----------------|--------------------------------------|
| XRCC1      | Q399R             | c.1196A>G      | Acute/Late radiation reaction        |
| XRCC1      | R194W             | c.580C>T       | Acute/Late radiation reaction        |
| XRCC1      | R280H             | c.839G>A       | Cancer risk, late radiation reaction |
| XRCC3      | Y241M             | c.722C>T       | Late radiation reaction              |
| LIG4       | A3V               | c.8C>T         | Lung cancer risk                     |
| LIG4       | <b>T9I</b>        | c.26C>T        | Lung cancer risk                     |
| ATM        |                   | c.8850+60A>G   | Late radiation reaction              |
| ATM        |                   | c.5674+1518T>A | Breast cancer risk                   |
| XPD/ERCC2  | D711D             | c.2133C>T      | Late radiation reaction              |
| MDC1       | A1657A            | c.4971C>G      | Acute/Late radiation reaction        |
| CHEK1      |                   | c.1233+35G>A   | Pancreatic cancer risk               |
| XRCC6/Ku70 | G593G             | c.1779G>T      | Breast cancer risk                   |
| XRCC5/Ku80 |                   | c2110-2408G>A  | Breast cancer risk                   |
| RAD51C     |                   | c98G>C         | Head/neck cancer risk                |
| MRE11      |                   | c.*2501A>G     | Bladder cancer risk                  |
| NBS1       | l171V             | c.511A>G       | Breast cancer risk                   |
| RAD50      |                   | c.3390-1922T>G | Non-Hodgkin lymphoma risk            |

#### Two strategy to evaluate the DNA repair variants

### Cells from individuals carrying candidate SNPs



Evaluation of such variants proved difficult

- 1. smaller size effects
- 2. confounding factors
- 3. diverse genetic background

### Evaluation system in a uniform genetic background



#### Artificial nucleases and genome editing



# Genome editing identification of an intergenic mutation as causative of genetic disorder



**One-year-old boy with a severe disease** 

Wilms tumor, seizures, and nonverbal. His parents expected to have a third healthy child. However, prenatal DNA diagnosis was difficult because no coding mutation in *BUBR1* was found, suggesting that causative mutation is a non-coding one.

Premature chromatid separation (PCS) syndrome Autosomal recessive disorder Loss-of-function mutations in a gene encoding BUBR1, a spindle assembly checkpoint protein



Premature chromatid separation (PCS)

A single base substitution (G>A) in an intergenic region 44kb upstream of *BUBR1* was identified as potentially causative  $G_{A}$ 

BUBR1

To answer this question, we used genome editing

Is this the causal mutation or merely correlates with the syndrome ?

#### Two-step single-base-pair editing strategy



## The nucleotide substitution identified was the causal mutation of the syndrome



Ochiai et al., PNAS 2014

The parents performed amniocentesis during the third pregnancy. It was found to be heterozygous. A healthy baby boy was born.

#### NBS1 I171V polymorphism (511A>G)

- 1. Association with an increased breast cancer risk (Roznowski et al 2007).
- 2. 2.58% of cancer patients are I171V carriers, compared to the 0.17% in the control group, suggesting that the I171V may be susceptibility factor in cancer (Nowak et al 2008)

Genome editing was used to verify that this SNP is indeed involved in cellular radiosensitivity

#### **One-step genome editing strategy**



### Restriction enzyme and sequence analysis of genome edited cells



| number of<br>clones analysed | <i>Sca</i> l-digested clones |
|------------------------------|------------------------------|
| 96                           | 3 (3.15%)                    |





### Genome edited cells showed increased frequency of MN formation



### Conclusion

- 1. Individual differences in radiosensitivity exist in human populations.
- 2. We designed TALEN-mediated two-step single-base-pair editing, which we used to introduce a nucleotide variant associated with a chromosomal instability syndrome into human cultured cells to demonstrate that it is the causative mutation.
- 3. We designed CRISPR/CAS9-based one-step genome editing and applied it to the evaluation of NBS1 I171V polymorphism for cellular radiosensitivity.
- 4. Genome editing is now widely used and become a valuable tool to investigate individual radiosensitivity.

### Acknowledgements

### Ekaterina Royba, Silvia Natsuko Akutsu, Hiromi Yanagihara, Tatsuo Miyamoto

Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University

#### Takashi Yamamoto, Hiroshi Ochiai

Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University

#### Yoshiki Kudo

Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University

#### Satoshi Tashiro

Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University